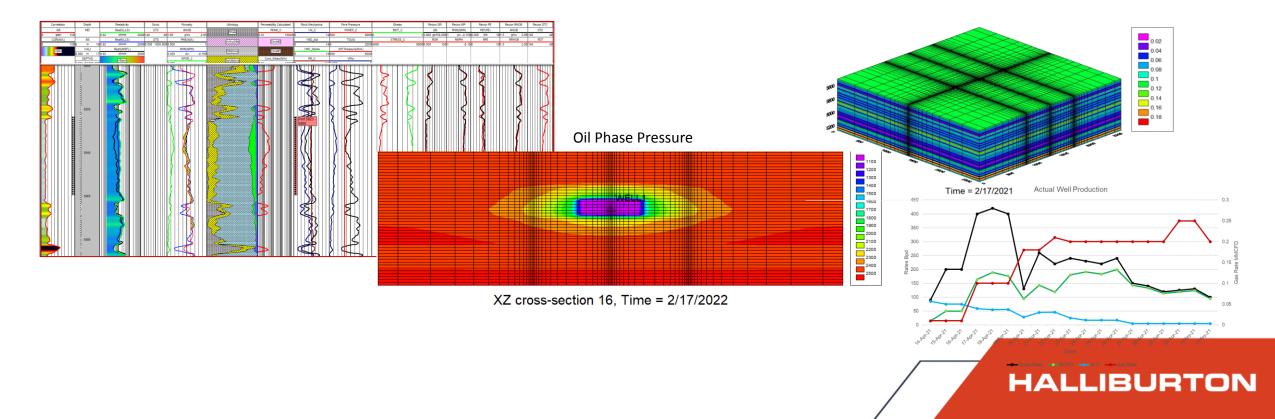
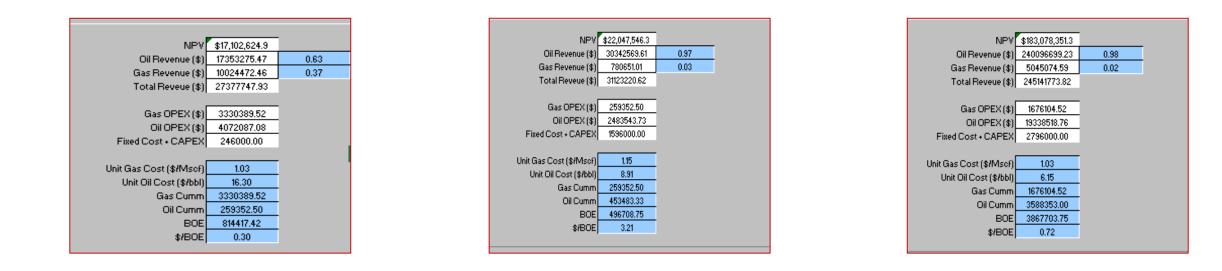
ell ompletion and rac esign orkflow

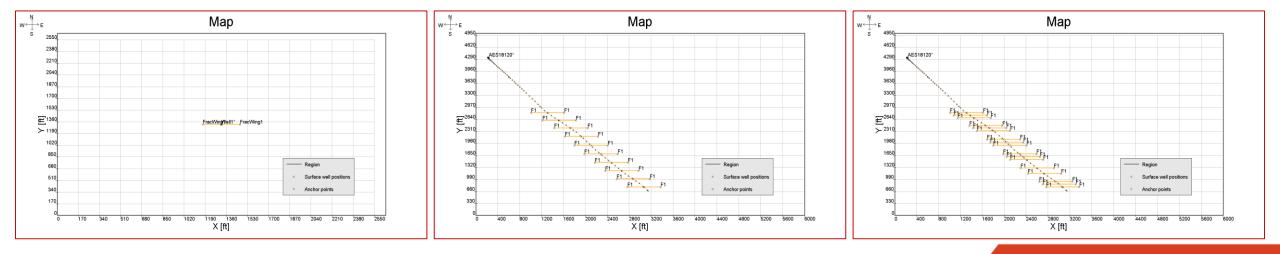
- HZ Well Design Workflow
- Halliburton Unconventional Completion systems


- Multistage Completions Solutions
- Halliburton RapidSuite[™] sleeve Technologies
- Reliable Zonal Isolation
- Run History

Well Design Vertical el valuation

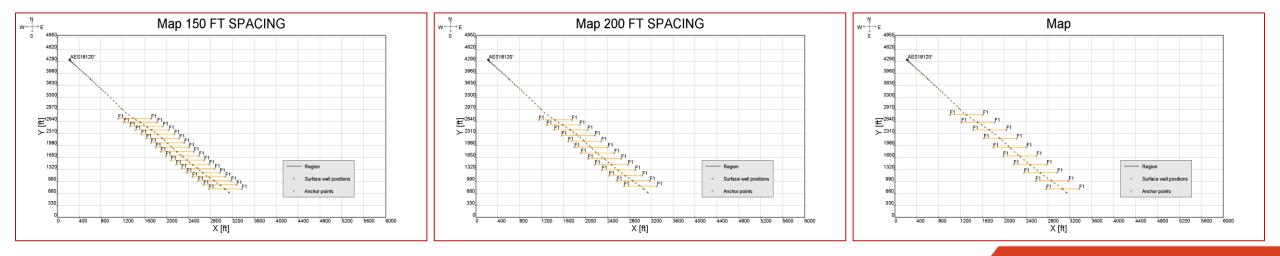
- Vertical well "Pilot hole" petrophysical/ geo-mechanical interpretation identifying sweet spots for stimulation.
- Production history matching through reservoir modeling "Quiklook" for performance evaluation.
- Stimulation design for vertical well & post job production matching.

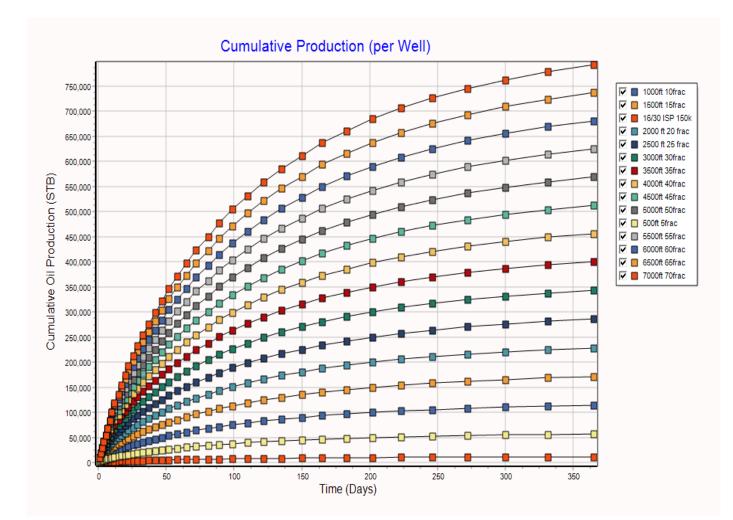

Well Design HZ Well Design and Sensitivity


- valuating vertical well based on
 - ». Iogs

- » roduction history
- » $\$ eservoir evaluation for \ldots
- he process includes different software packages to get a
- ensitivity conducted for well based on different parameters:
 - umber of frac stages
 - ateral length
 - pacing
 - erforation lusters

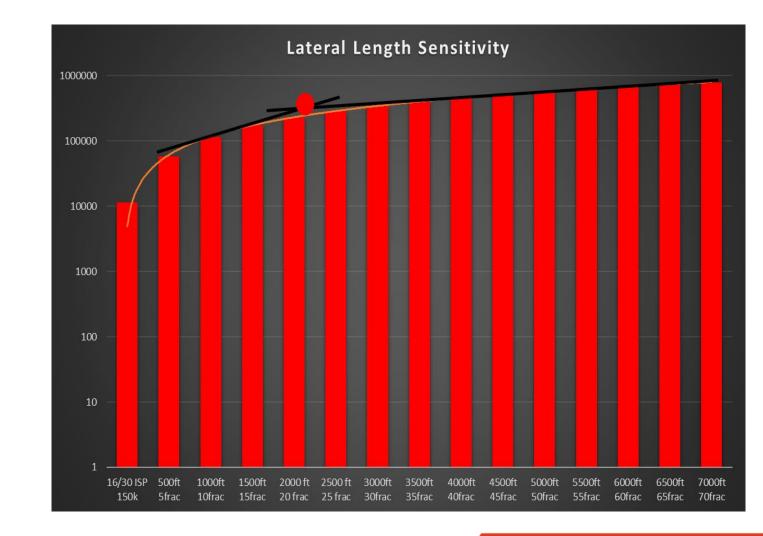
GOHFER	RACPRO>
GeoGraphix [®]	Fuel fronts in Formation at Treatment Erd
	HALLIBURTON MATERIAL LIBRARY


Well Design NPV For Vertical, HZ and Cluster Well


Well Design NPV For HZ Different Spacing 150,200 and 300 ft

NPV \$185,322,105.2 Oil Revenue (\$) 242991944.44 0.98 Gas Revenue (\$) 5174945.30 0.02 Total Reveue (\$) 248166889.75	NPV \$177,798,197.4 Oil Revenue (\$) 232407675.69 Gas Revenue (\$) 4857825.83 Total Reveue (\$) 237265501.52	Oil Pausaus	(\$) 4580350.80 0.02
Gas OPEX (\$) 1719250.93 Oil OPEX (\$) 19590827.81 Fixed Cost + CAPEX 2946000.00	Gas OPEX (\$) 1613895.62 Oil OPEX (\$) 18712098.47 Fixed Cost + CAPEX 2046000.00	Gas OPEX Oil OPEX Fixed Cost + CAF	(\$) 18218541.54
Unit Gas Cost (\$/Msef) 1.04 Unit Oil Cost (\$/bbl) 6.19 Gas Cumm 1719250.93 Oil Cumm 3631623.74 BOE 3918165.56 \$/BOE 0.75	Unit Gas Cost (\$/Mscf) 1.03 Unit Oil Cost (\$/bbl) 5.96 Gas Cumm 1613895.62 Oil Cumm 3473437.09 BOE 3742419.69 \$/BOE 0.55	Unit Gas Cost (\$/M: Unit Oil Cost (\$/ Gas Cur Oil Cur B \$/B	bl) 5.84 nm 1521711.23 nm 3390089.77 DE 3643708.31

Well Design Lateral Length Sensitivity


- Different Lateral Lengths are compared with constant frac Spacing.
 - Drainage area is kept constant.
 - Reservoir properties and PVT properties are kept constant based on actual well data.

Well Design

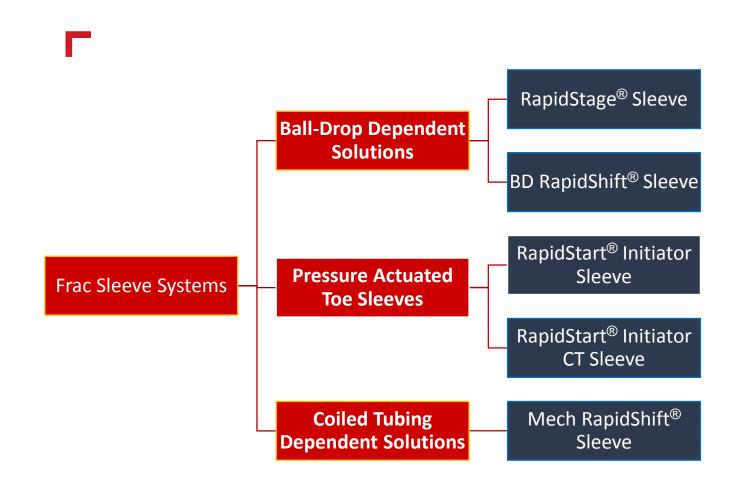
ateral ength ensitivity

- Cumulative production for different scenarios are plotted in a logarithmic scale.
 - Tangents are used to identify most economic option among the given scenarios.

alliburton nonventional ompletion

Halliburton Unconventional Completion systems

alliburton ∖apiduite™ sleeve echnologies


Frac Sleeve Systems Make It Easy to Do More with Less

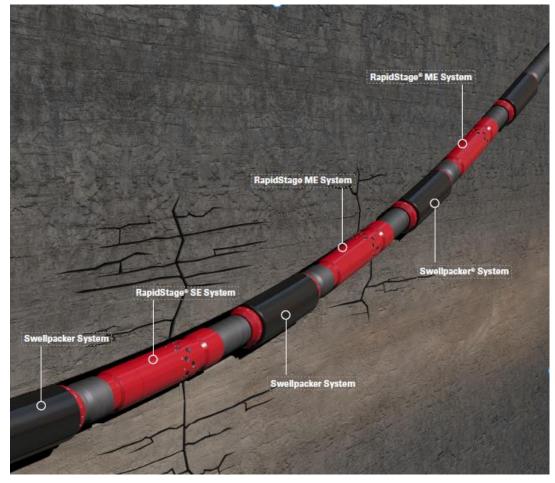
■ alliburton \apiduite[™]

Halliburton Multistage Frac Sleeve Systems

RapidStage® Frac Sleeve

Г

• \apidtage® (ingle ntry) .ystem


The RapidStage SE sleeve is a ball-activated frac sleeve for independent stage fracturing through individual sleeves. This system enables 50 or more stages in a single completion.

• $\ \$ apidtage (. uti ntry) . . ystem

The RapidStage ME sleeve is applied where a large number of transverse fractures are desired along a wellbore. Several RapidStage ME sleeves are opened together with a single ball launched from surface.

Apidage . . emented ystem Cementing RapidStage ME sleeves in a wellbore

Cementing RapidStage ME sleeves in a wellbore provides an efficient completion method by creating numerous frac treatment entry points with the dependability of cement isolation.

RapidShift® Multistage Stimulation and Production Sleeve System

• or optional sleeve closure after a frac treatment, the \apidhift® sleeve is an ideal solution. his

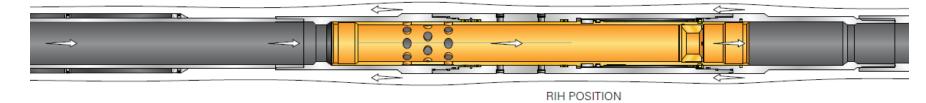
RapidShift[™] Ball-Drop Actuated, Mechanically Closed Stimulation Sleeve

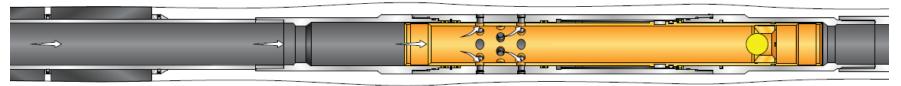
Contraction of the local	 	
	 • • •	

RapidShift ™ Mechanically Shifted Stimulation/Production Sleeve

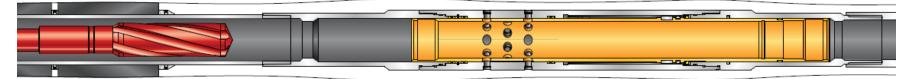
RapidShift® Frac Sleeve System

Г

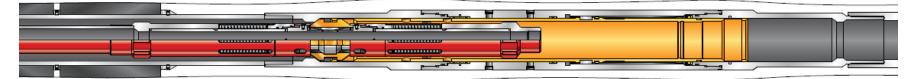

RapidShift™ Ball-Drop Actuated, Mechanically Closed Stimulation Sleeve

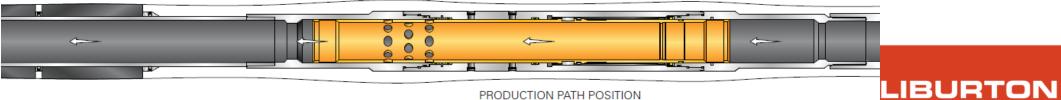


RapidShift TM Mechanically Shifted Stimulation/Production Sleeve

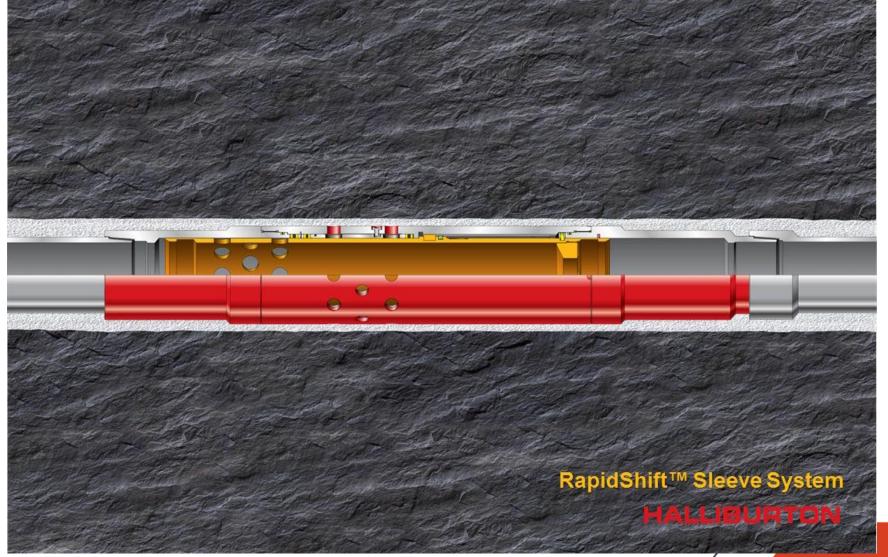

Casing Size (in)	Tool OD (in)	Tool ID (in)	Max Temp °F (°C)	Pressure Rating (psi)	Max No. of Zones* (Ball-Drop Only)
3 1/2	4.40	2.818	350 (177)	10,000	25* (N/A Cemented)
4 1/2	5.70	3.75	350 (177)	10,000	48* (35 Cemented)
5 1/2	7.25	4.67	350 (177)	10,000	55* (36 Cemented)

MultiStage Frac – RapidShift® System

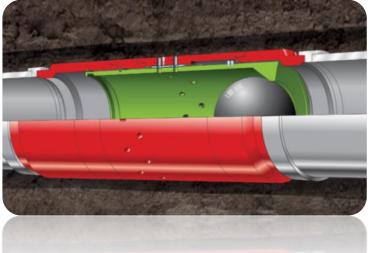



BALL DROP & FRACTURING POSITION

MILL BALLS & BAFFLES & OPEN SCREEN POSITION



SHIFT CLOSE RAPIDSHIFT SLEEVE POSITION



PRODUCTION PATH POSITION

How Does the RapidShift® Ball-Drop Sleeve Work?

Ball Activated Sleeve Stage Count

- emporary
- ntervention
- nables

-	onsiders		
	- emented		
	– \equiren	rent	
-	œs		
	– . in		
	- ax		
	– se	igh	xpansion

(ax .

 \mathbf{X} ..

	Zone	BALL OD +0.000/-0.005 (IN)	BAFFLE ID ±0.002 (IN)			
	1	RapidStart Initiator Sleeve				
	2	1.811	1.775			
	3	1.858	1.821			
	4	1.906	1.868			
	5	1.955	1.916			
	6	2.005	1.965			
	7	2.056	2.015			
	8	2.108	2.066			
	9	2.161	2.118			
	10	2.215	2.171			
	11	2.270	2.225			
	12	2.326	2.280			
	13	2.383	2.326			
	14	2.441	2.393			
	15	2.501	2.451			
	16	2.562	2.511			
	17	2.624	2.572			
	18	2.687	2.634			
	19	2.751	2.697			
	20	2.817	2.761			
	21	2.884	2.827			
	22	2.952	2.894			
Ì	23	3.022	2.962			
ľ	24	3.093	3.032			
	25	3.166	3.103			
	26	3.240	3.176			
	27	3.316	3.250			
	28	3.393	3.326			
	29	3.472	3.403			
	30	3.552	3.482			

Sleeve Opening Event

Г

RapidBall[™] Self-Removing Ball Technology

alliburton \apidallTM ball technologies are self

Initial limit the cost of post

 mpact up to , psi and temperatures up to ° (°).

\apidart[®] .nitiator . (penylose) leeve

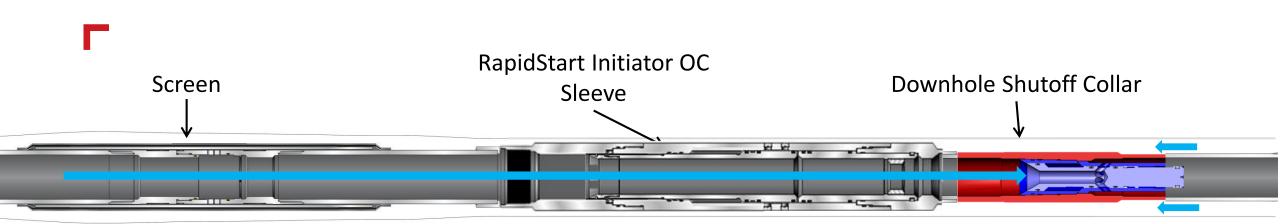
 The Reliability of the RapidStart[®] Initiator sleeve with the capability to be closed (and re-opened if needed)

A perfect match for the field-proven RapidShift[®] sleeve

RapidStart® Initiator OC (Open/Close) Sleeve

raditional \apidtart[®] nitiator sleeve opening operation

10 Ksi differential pressure @ 350°F

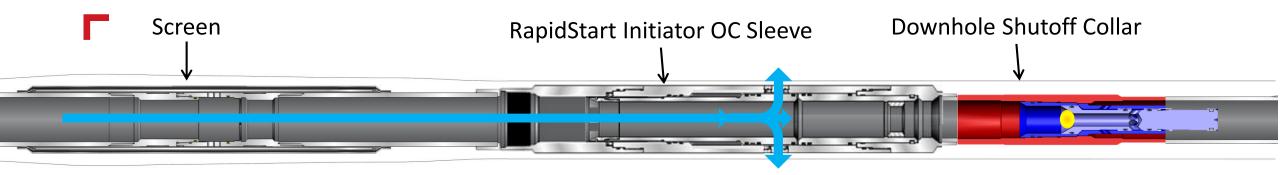

15 Ksi absolute pressure

Cemented or openhole

 Same flow area as the reliable RapidStart[®] Initiator sleeve

Closed (or re-opened) using the High-Expansion Shifting Tool

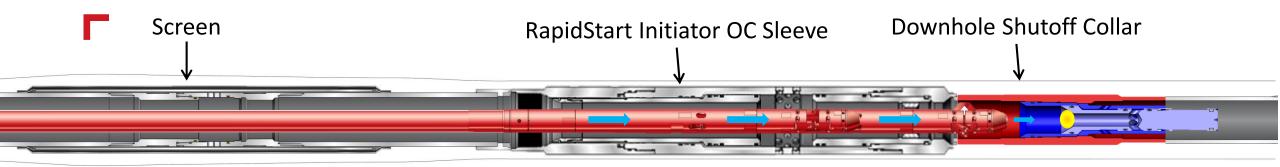
RapidStart® Initiator OC Sleeve – Tool Operation - Opening



HALLIBURTON

and completion

rop ball to close shut off collar & pressure up to close


RapidStart® Initiator OC Sleeve – Tool Operation - Opening

HALLIBURTON

one back during rigless operations & pressure up to open \apidtart nitiator leeve
 erform st frac operation

RapidStart® Initiator OC Sleeve – Tool Operation - Closing

- . \land with ight xpansion hifter to lose \land apidtant initiator sleeve
- . ctivate hifter by pumping through tool then close sleeve while pumping
- . verpull to pull lower inner sleeve upward, stop pumping to disengage shifting arms and to urface to

HALLIBURT

/ \apidhift® sleeve hifting cd

Reliable Zonal Isolation

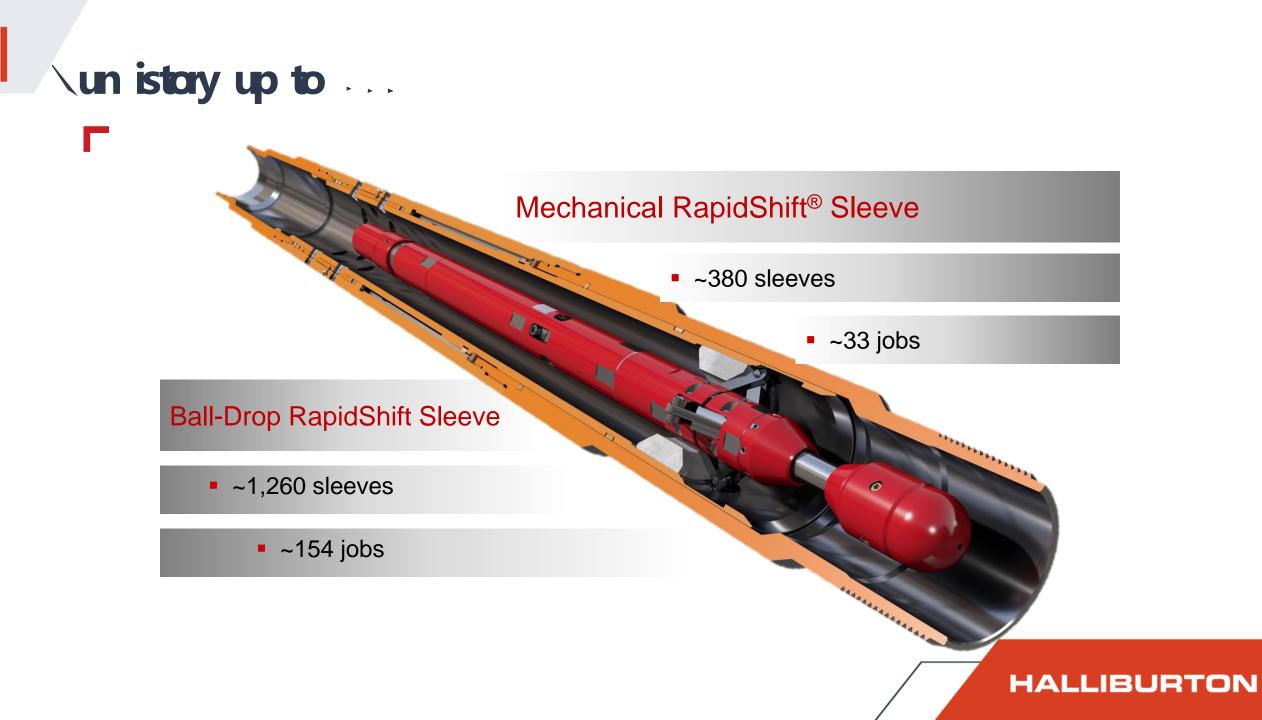
• wellpacker® ystems

wellpacker®

issues. ith various elastomers available to

wellpacker

ZoneGuard® Openhole Packers


• one uard®

he packer uses a uniquely designed element

\apidhift® ultistage rac leeve ystems

hank ou!

